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Abstract

Lighting is crucial for portrait photography, yet the
complex interactions between skin and incident light
are expensive to model computationally in graphics and
hard to reconstruct analytically via computer vision.
Instead, to allow fast and controllable reflectance and
lighting editing, we form a physically-based decomposi-
tion through deep learned priors from path-traced por-
trait images. Previous approaches use simplified ma-
terial models or low-frequency or low-dynamic-range
lighting struggle to model specular reflections, or relight
directly without intermediate decomposition. Instead,
we estimate surface normal, skin albedo and roughness,
and high-frequency HDRI maps, and propose an archi-
tecture to estimate both diffuse and specular reflectance
components. In experiments, we show that this ap-
proach can better represent the true appearance func-
tion than simpler baseline methods, leading to better
generalization and higher-quality editing.

1. Introduction

Lighting is a crucial factor in successful portrait photog-
raphy. Photographers set up studio lights and reflectors to
enhance the appearance of subjects, with careful considera-
tion for the appearance of skin to avoid unwanted gloss and
highlights. For casual camera users, this level of control is
difficult to achieve. Manually editing lighting and material
appearance after a photo has been taken might simplify the
creation process for novices, but current tools require man-
ual operation and skill to produce convincing effects.

Decomposing an image into useful channels could help
the portrait manipulation task. Under Lambertian re-
flectance assumptions, intrinsic decomposition separates
the material color—the albedo—from the received illumi-
nation at each pixel of an image. This allows edits and
recombination with novel lighting or materials. However,
faces are not Lambertian, and require complex lighting and
material models to more accurately decompose an image
into useful intermediate channels. Further, such decomposi-
tions are ill-posed, and so must consider how to incorporate

assumptions or priors to produce plausible answers.
Our work focus on the problem of single image face de-

composition using physically-based lighting and material
models. First, we consider diffuse and specular reflectance
under a Cook-Torrance SVBRDF model, consisting of sep-
arate skin albedo, and specular scaling coefficient (ρ) and
roughness (m) maps. Next, we consider that high-dynamic-
range lighting with high spatial frequency is critical for
specular appearance. As such, we create realistic synthetic
data using real-world face geometry captures, real-world re-
flectometer measurements of skin, and real-world HDRI il-
lumination with self-shadowing via path tracing.

To produce plausible decompositions, we supervise
training of a deep neural network to estimate from a single
face image a normal map, albedo map, specular scaling and
roughness maps, and an approximate HDR incoming light-
ing map. Then, as realistic shadowing and glossy reflec-
tion rendering is computationally expensive, we use these
physically-based maps to predict diffuse shading and spec-
ular maps given the lighting as conditioning information.
Finally, we reconstruct the outputs using our image for-
mation model. Each intermediate image formation model
component (and so network architecture) can be supervised
explicitly for stability, with final end-to-end fine tuning.

We operate directly on linear HDR images as specular il-
lumination components are often clipped/saturated in LDR
images. This allows more accurate specular reconstruction,
Linearity also makes our decompose-edit-compose pipeline
possible without introducing any non-linear errors due to
tone mapping, which eases later editing and compositing.
For instance, such a decomposition allows relighting with
plausible specular highlights, along with shading editing
and gloss and sharp specular highlight editing. In compar-
isons to baselines with simpler lighting and material mod-
els, and to pure relighting methods that do not decompose
to intermediate maps, our method is better able to repro-
duce specularity and shading, and so provide more control
in editing and more accurate relighting.

In short, our work argues that portrait editing can benefit
from learning priors for decompositions through physically-
based image formation models. Our contributions are:
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Reflectance Model Illumination Model Geometry Representation Self-Shadow Code Data Input Image
Method Yes/No? Released? Released? LDR/HDR?
Yamaguchi et al. [35] Textures; explicit De-lighting only; implicit 3DMM△ + Displacement map NA No No LDR
Lattas et al. (AvatarMe) [17] Textures; explicit De-lighting only; explicit 3DMM△ + Displacement map NA No Yes LDR
Dib et al. [8] BSDF; explicit Area lights; explicit 3DMM Yes No No LDR
Mallikarjun et al. [22] Reflectance field rep. OLAT basis; explicit 3DMM Yes No No LDR
Smith et al. (AlbedoMM) [27] BSDF; explicit SH2; explicit 3DMM No Yes No LDR
Zhou et al. (DSPR) [39] Lambertian; implicit SH2; explicit Normals No Yes Yes LDR
Sun et al. [28] None; implicit Environment map; explicit None Implicit No No HDR
Hou et al. [11] Lambertian; implicit SH2; explicit 3DMM Yes Yes Yes LDR
Sengupta et al. (SfSNet) [26] Lambertian; explicit SH2; explicit Normals No Yes Yes LDR
Nestmeyer et al. [20] Lambertian+Residual; explicit Directional Light; implicit Normals Yes No No HDR
Wang et al. [31] BSDF; explicit Environment map; explicit Normals Yes No No LDR

Ours BSDF; explicit Environment map; explicit Normals Implicit Yes Yes HDR
Table 1. Comparison of closely-related state-of-the-art face appearance modeling methods. △ : proxy for UV unwrapping. The table
was created based on our best-effort understanding of published methods from their papers and presentations. The first block defines
techniques that estimate explicit geometry; the second block are ‘direct’ relighting methods without decomposition; the third block are 2D
decomposition methods and are most closely related to our work.

• A realistic synthetic face image generation pipeline us-
ing public available face assets, creating a high qual-
ity synthetic face dataset with specularity and self-
occlusions under varying lighting conditions,

• A method to decompose HDR image via a physically-
based image formation model, allowing editing of
properties like spatially-varying specular gloss.

Our work helps to shed light on how to accomplish accu-
rate image decomposition without access to expensive light
stage captures. We will release our source code and dataset
for further research in the community.

2. Related work

We discuss classic and recent methods that address
closely-related problems. We also provide an additional
table of closely-related work (Table 1), This relates re-
flectance models, illumination models, geometry models,
and model features, as well as whether code and data are
available for each technique.

Intrinsic decomposition. These commonly assume clas-
sic monochromatic illumination (MI) [2] or Retinex con-
straints [16]. Li et al. [18] used statistics of skin reflectance
and facial geometry as constraints in an optimization for
intrinsic components. Recently, end-to-end learning ap-
proaches embed priors in neural networks via synthetic im-
ages [13, 19]. Better results can be achieved with hybrid
training of synthetic and real data [26] or with high-quality
real images [20, 31].

Skin reflectance models. Face appearance modeling is
well-studied in computer graphics. One common ap-
proach is the Torrance-Sparrow specular BRDF, as used by
Weyrich et al. [33] to develop an analytic spatially-varying
face rendering model with measured skin data. Recent anal-
ysis works employ it. For example, based upon 3DMM face

geometry, Smith et al. [27] build a statistical model for hu-
man face appearance including both diffuse and specular
albedo. Subsurface scattering is an additional skin appear-
ance component [21] that is computationally expensive to
model; similar to most concurrent works, we do not assume
this appearance factor in our model.

Face decomposition. With capture setups like light
stages, recent approaches have trained deep neural networks
to estimate physically-based reflectance from monocular
images, usually in a supervised manner [35, 26, 4, 20, 17,
31]. Sengupta et al. [26] assume Lambertian reflectance,
while Nestmeyer et al. [20] and Wang et al. [31] pre-
dict specularity in addition, though not with a decomposed
skin model. Yamaguchi et al. [35] and Lattas et al. [17]
trained deep neural networks to infer high-quality geome-
try, diffuse, specular albedo, and displacement map from a
single image but do not explicitly model illumination. In
our work, we avoid the problem of geometry estimation
and work only in screen space with normal maps. Finally,
differentiable ray tracing can produce accurate reconstruc-
tions [9] with more realistic self-shadows and without large
databases, though it is computationally expensive.

Lighting representation. Spherical harmonics (SH) cap-
ture low-frequency signals efficiently for fast rendering
[24, 1], and have been used at 2nd order to cheaply model
the irradiance onto the face for diffuse shading [23]. Zhou et
al. [39] use SH illumination to learn to relight a single input
face image. For more accurate decompositions, Kanamori
et al. [14] precompute light occlusion in the SH formulation
directly for human body relighting.

Environment maps store sampled light and are often in
a high dynamic range (HDR) for image-based lighting [7].
Many face works choose this representation as it can sample
high-frequency signals, though deep learning models often
use smaller (32 × 16) maps. Yi et al. [37] trace specular
highlights into the scene and obtain an environment map



Figure 1. Training dataset comparison. From left to right: Sf-
SNet uses normals derived from 3DMM geometry, SH2 ap-
proximated LDR lighting, and diffuse reflectance [26]. DIPR
uses SH2 approximated LDR lighting, Lambertian reflectance,
and normals derived from 3DMM fit to CelebA. To improve
upon these, our dataset uses realistic captured FaceScape geom-
etry [36], high-frequency HDRI environment maps, and Torrance-
Sparrow SVBRDF reflectance with physically-measured parame-
ters mapped from Weyrich et al. [33], leading to increased realism.

through a deconvolution determined by prior knowledge of
face materials. Calian et al. [3] use faces as light probes
to estimate HDR lighting from a single LDR photograph,
learning priors through an autoencoder. Sun et al. [28] es-
timate high frequency environment maps at the bottleneck
for portrait image relighting. Nestmeyer et al. [20] assume
directional lighting and model specularity as a non-diffuse
‘residual’ term in their image formation process.

Our work takes the decomposition approach with HDR
environment maps and a physically-based model of skin.
On high-quality supervised data, we show that this can im-
prove editing quality and capability over simpler decompo-
sition and pure relighting approaches.

3. Dataset generation

High-quality data is important for overall model qual-
ity and generalization, but is expensive to acquire via light
stages and so is often proprietary. As such, the research
community has created synthetic databases for face decom-
position and relighting [26, 39] (Fig. 1). Our approach in-
creases data realism; we will release scripts to generate our
data for further research in face analysis and editing.

Renderer and Shading Model We generate our synthetic
dataset in Blender [6] and use the physically-based path
tracing renderer Cycles. Our synthetic faces are mod-
eled with Blender’s Principled BSDF, which is based on
Disney’s “PBR” shader, itself derived from the Torrance-
Sparrow model [29, 30]. The rendering integral for this dif-
fuse and specular model is:

L(x, ωo) =

∫
Ω

α(x)L(x, ωi)(N · ωi)dωi

+

∫
Ω

fsTS(x, ωo, ωi)L(x, ωi)(N · ωi)dωi

(1)

Figure 2. High frequency HDR lighting and self occlusion is re-
quired for accurate shadowing and specular reproduction. First
row: Images rendered with HDR environment map. Second row:
Images rendered with second order spherical harmonic approxi-
mation (ii,b). Column (a) Rendered image, (c) Rendered image
(zoomed in), (d) Diffuse shading, (e) Specular component.

where:

fsTS = ρs
1

4

DGFr(ωo ·H)

(N · ωi)(N · ωo)
, (2)

with:

G = min{1, 2(N ·H)(N · ωo)

(ωo, H)
,
2(N ·H)(N · ωi)

(ωo, H)
}. (3)

G is the geometry term, D is the micro-facet distribution,
and Fr is the reflective Fresnel term. We have a factor of
4 in the denominator instead of π in the original Torrance-
Sparrow paper [29] as we use the GGX micro-facet distribu-
tion [30]. The free variables determining specular appear-
ance are the surface normal N , lighting LΩ, albedo α(x),
specular scaling coefficient ρs and roughness m.

Geometry and Albedo Our face geometry and diffuse
albedo data comes from the large-scale 3D face dataset
FaceScape [36], consisting of 18,760 detailed 3D face mod-
els and high resolution albedo and displacement maps, cap-
tured from 938 subjects each with 20 expressions.

Skin Reflectance We use skin reflectance statistics from
the MERL/ETH Skin Reflectance Database [33], which
provides per-face-region estimates. For each face in
FaceScape’s captured data, we find the closest matching
face regions in the MERL/ETH dataset using the per-face-
region diffuse albedo, and then sample specular roughness
m and scaling coefficient ρs for specular response. Rather
than constant ρ and m for all face regions across all individ-
uals [31], our approach uses spatially-varying specularity.
We split the face into 10 regions and randomly sampled the
Torrance-Sparrow specular reflectance parameters per face
region as in Weyrich et al. [33]. The face regions and vari-
ation of parameters are shown in Fig. 15 of their paper. We
manually aligned the FaceScape geometry and albedo data
to have the same 10 face regions.



Figure 3. Our neural network architecture is composed of three blocks. Blue: First, a decomposition block uses a shared bottleneck to
produce the constituent maps for shading. Yellow: Second, a diffuse shading branch uses lighting conditioning [31] in the decoder to
produce a shading map (quotient image). Green: Third, a specular shading branch takes skin roughness and scaling maps and, again via
lighting conditioning, creates the specular map. Finally, the image is linearly composited.

Figure 4. Illumination Block architecture. Blue highlighted cubes
indicate application of group normalization [34]

Lighting representation We use a 32 × 16 × 3 resolu-
tion HDR image [20, 28, 31] rather than an SH2 approxima-
tion [26, 39]. SH2 approximations cannot capture illumina-
tion effects like hard shadows from self-occlusion or accu-
rate specular reflectance (Fig. 2 compares via path tracing).
Later, we will show the importance of higher-frequency
illumination in the network’s ability to model these com-
plex effects (Figs. 9 and 5). Our equirectangular HDR en-
vironment maps are selected from the Laval Indoor HDR
Dataset [10]. We choose the environment maps randomly,
and replace only for very dark lighting conditions.

Output We render our data on a NVIDIA Quadro RTX
6000 GPU, taking≈ 18 seconds per image. We export each
component as a 512 × 512 image, in 32-bit high dynamic
range where appropriate: normal IN , albedo Iα, lighting l,
scaling coefficient Iρ, roughness Im, as well as intermedi-

ate diffuse shading Ish (sometimes called a quotient image),
specular Isp, albedo modulated diffuse shading ID, and fi-
nal output I . For reproduction in the paper, all HDR images
are tone mapped via the Reinhard operator [25].

4. Decomposition architecture

Given a dataset of face images with generated super-
vision for a physically-based deep learning approach, we
take inspiration from Sengupta et al. [26] and Nestmeyer et
al. [20] and design a three-stage approach with decomposi-
tion, diffuse shading, and specular branches (Fig. 3).

1. Decomposition branch. This takes as input a single
portrait image I and decomposes it into the diffuse albedo
map (Îα), surface normal map (ÎN ), specular reflectance pa-
rameter maps Îρ and Îm, and illumination (l̂). The decom-
position branch must extract all relevant information from
the face, and it is important that the features embedded in
the bottleneck are not invariant to lighting as otherwise it
would be impossible to predict an environment map. As
such, our design encodes a large bottleneck from the input
image, from which separate ResBlocks and decoders can
transform and up-convolve maps back to input resolution.

1a. Illumination block. Fig. 4 shows detailed architec-
ture of the illumination block. This block estimates a high
frequency 16×32×3 environment map from the bottleneck
encoded from the input image. Taking inspiration from Hu
et al. [12] and Sun et al. [28], our method decomposes 256
localized environment maps (referred to as illumination ba-
sis in the figure) and 256 corresponding confidence maps.
These are then combined in a weighted sum to form the es-
timated environment map.



Figure 5. Comparison of our relit results with Hou et al. [11], DIPR and SfSNet

2. Diffuse shading branch This takes a normal map as
input with illumination conditioning to produce the shading
layer (Îsh). It is built from a U-Net autoencoding architec-
tures with skip connections, with additional lighting condi-
tioning on the decoder. Inspired by Wang et al. [31], we
observed that illumination is best fed as a feature-wise lin-
ear modulation at the up-convolution layers, analogous to
AdaIN in StyleGAN [15], rather than concatenation at the
input stage or at the bottleneck stage [28].

3. Specular branch. This is also a U-Net with illumina-
tion conditioning in the decoder. It takes a normal map and
specular reflectance parameter maps Îρ and Îm as input to
produce the specular layer Îsp.

Final output. We construct the final image Î simply as:
ÎD = Îsh ∗ Îα; Îα = ÎD+ Îsp. Unlike Wang et al.’s lighting
network [31], our final image is created from a linear com-
bination of estimated shadings, making editing operations
on the inferred maps easier and faster.

4.1. Training

Each branch is initially trained separately on 128 × 128
input images, then all three are combined and fine tuned end
to end for reconstruction.

HDR space and data normalization Unlike previous
works that operate on LDR images, we use HDR images as
the linear property of pixel intensities is critical for accurate
specular reconstruction and avoiding artifacts like clipping.

Given that we are operating with HDR images, data nor-
malization becomes critical to network training. Simple

Algorithm 1 Data normalization routine. Notation: nor-
mal IN , albedo Iα, illumination l, specular scaling coeffi-
cient map Iρ, spcular roughness map Im, diffuse shading
(quotient image) Ish, specular shading Isp, diffuse lit face
Id, and input image I .
Input: Set L of HDR environment maps.
Input: Predetermined median m̂← 0.5.
Input: i← {0, . . . , |L| − 1}.

1: Compute median mi∀li ∈ L.
2: Compute exposure correction ei ← mi/m̂.
3: li ← li ∗ ei.
4: Compute mean exposure m̄∀ei.
5: li ← log(li).
6: Apply m̄ to IN , Iα, Iρ, Im, Ish, Isp, Id, I .
7: Standardize.

standardization will fail to reconcile the large differences
in distributions between the input image, each reflectance
component, and the environment map, and lead to unstable
training. As such, following Weber et al. [32], we use nor-
malization techniques to preserve the dynamic range prior
to standardization, which can be reversed after inference.

Losses Given our rich synthetic data, we penalize L1 su-
pervised losses on all components. For the HDR illumina-
tion (l̂), we penalize a weighted-log L1 loss, weighted by
the solid angle of each pixel over the sphere [32]. We set
λρ, λm = 1.0, λN , λα, λsh, λD, λsp, λI = 0.8 and λl = 0.1,
where λi is the weight on the respective loss for component
i. Please see our supplemental material for additional archi-
tectural layer and training loss details.



Figure 6. Diffuse albedo estimation consistency: Our network
predicts more consistent diffuse albedo across different illumina-
tions for the same individual (top pair, bottom pair), while SfSNet
is less consistent.

5. Experiments

Dataset We render 100 face identities each under 25 ran-
dom (of 100) different illumination environments, produc-
ing 2,500 training samples. Then, we render a test set of
100 other face identities each under 10 random (of a set of
20) test illuminations, producing 1,000 test samples. For
our qualitative results, we show examples from only ten au-
thorized identities [36], none of which are in the training set
or the test set used for numeric comparisons.

Baselines For decompositions, we compare to public
baselines. We consider SfSNet from Sengupta et al. [26],
which is a 2D single-image decomposition approach that as-
sumes SH2 lighting and diffuse reflectance only. We retrain
SfSNet on our more realistic image data. We also compare
to AlbedoMM from Smith et al [27], which is a geometric
fitting approach based on 3DMM with diffuse and specu-
lar statistical model components. This cannot be retrained
on our data. Finally, for relighting, we compare to DIPR
from Zhou et al. [39], which uses a SH2 bottleneck to re-
light without decomposition.

Ablation—No ρ or m Fig. 10 demonstrate that estimat-
ing a specular map directly from normal and bypassing sep-
arate ρ and m maps produces substantially less accurate
specular results for our architecture.

Figure 7. Our specular estimation compared to AlbedoMM (a 3D
morphable model fitting method) shows more accurate reproduc-
tion of both sharp and broad highlights.

Results—Quantitative evaluation In Table 3, we quan-
titatively compare our decomposition and reconstruction re-
sults with SfSNet using L1 (the loss that both methods
penalize), mean-squared error, and perceptual LPIPS [38]
metrics. Our method produces more accurate reconstruc-
tions overall, with equivalent albedo estimates and better
shading estimates. Given SfSNet’s assumptions, we also
show results when only diffuse effects are in the input (col-
umn ‘Diffuse’) for reconstruction without specular effects.
Here, our method shows smaller gains over SfSNet. For
specularity, we compare to AlbedoMM [27] in Table 2. We
use their probabilistic fitting pipeline 1 to estimate 3DMM
parameters. The estimated specular maps are of lower qual-
ity, partly because of geometric fitting inaccuracies.

Results—Qualitative evaluation
Albedo Estimation: Ours vs. SfSNet: In Figures 6 and 8,
we qualitatively compare our diffuse albedo estimates from
our decomposition branch with SfSNet’s. In Fig 6, we show
that our network can predict consistent albedo for the same
individual across different illumination conditions, while
SfSNet is less able to do so despite having been trained on

1Pipeline published here.

https://github.com/waps101/AlbedoMM/tree/master/scala


Figure 8. Specular separation: With its explicit specular han-
dling, our model does not bake specular effects into the albedo.
Without explicitly modeling specular, SfSNet tends to bake this
appearance into the albedo image, causing it to look closer to the
reconstruction.

the same data 2 . We reason that this is due to our network’s
ability to model the distribution of higher-frequency HDR
illumination. In Figure 8 we show the importance of model-
ing specularity. Without explicit specular handling, SfSNet
tends to bake specular effects into the albedo layer, making
them look more like the input images. Our approach does
not do this as it explicitly reconstructs specular, which we
will later show is important for editing and relighting tasks.

Diffuse Shading Estimation: Ours vs. SfSNet : In Fig-
ure 9, we compare our shading layer estimation to SfSNet
on hand-picked illumination conditions where the light is
causing self-occlusions. Our network’s approach of using
high frequency illumination is better able to construct more
complex diffuse shading with self-occlusion effects, which
is important for capturing realistic illumination. SfSNet’s
SH2 lighting assumption prevents this model from being
able to capture these effects.

Specular Estimation: Ours vs. AlbedoMM : In Figure
7, we compare our specular layer estimation to AlbedoMM,
which is one of the only published specular models and
is attempting to solve a 3D fitting problem. We show our
model’s ability to capture specular effects under varying il-
lumination from a 2D image.

2Error in photogrammetry: Some of FaceScape’s GT diffuse albedo
have illumination baked into it as seen in Fig. 6

Figure 9. Modeling higher-frequency illumination than SH2 pro-
duces shading that is closer to the path-traced ground truth.

Table 2. Our specular map estimates vs. AlbedoMM [27].

Methods Specular
L1 ↓ MSE ↓ LPIPS ↓

AlbedoMM 0.2537 0.0866 1.1404
Ours 0.0596 0.0071 0.2366

5.1. Applications

Relighting: Ours vs. DIPR vs. SfSNet. Relighting
takes as input a portrait image and a target illumination;
some approaches tackle this through decomposition and
others attempt to more directly learn a relighting func-
tion [39]. We compare our results with DIPR [39] and
SfSNet. Besides the limitation that both approaches use
2nd-order SH lighting, DIPR also assumes monochromatic
lighting. Figure 5 shows relighting under various target il-
luminations. Both DIPR and SfSNet fail to successfully un-
bake illumination effects: DIPR does not explicitly model
the reflectance components and SfSNet has a Lambertian
assumption. Our approach fares better.

Specular reflectance editing. Finally, we show editing
of the specular maps as another application of our approach
11. Notice because of our image formation model, we are
able to selectively edit the desired component and preserve
all components we chose not alter.

5.2. Additional Results

We show additional results of our decomposition ap-
proach and compare it with SfSNet [26] and ground truth
in Figures 12 and 13 at the end of the paper.



Figure 10. Predicting a specular layer with rho and roughness maps as input is beneficial. w/o maps indicates the specular branch was
trained with only normal as input, while w/ maps indicates training with both rho and roughness map provided as input along with normal.

Figure 11. Left to right; (a) Input, (b) estimated specular layer and (c) its ρ map. (d) edited ρ map and (e) the estimated specular layer with
(d) as input to specular branch. (f) Reconstruction using decomposition from (a) except replacing the specular layer with (e).

6. Limitations

The FaceScape [36] dataset contains mostly Asian faces
of limited skin tone variation, which restricts the ability of
the priors learned from the data to be useful for other skin
tones. Rather than build a practical system that one might
deploy in the real world, our work only attempts to show
academically that better synthetic data and image formation
can improve face decomposition. Further, capturing albedo
maps from human subjects is complex, and some of the data
we use still has baked illumination components from shad-
owing in fine geometric detail.

Another limitation is missing subsurface scattering.
While our renderer supports it, we do not use Christensen-
Burley’s [5] approximation for subsurface scattering for
computational reasons. Further, while it is possible to map
Christensen-Burley’s d parameter (approximate scattering
distance) to the scattering coefficient σ′

s and absorption co-
efficient σa captured by Weyrich et al. [33].

Due to the path tracing, slight render noise is present in
the training data. One side effect of using convolutional
neural networks of limited capacity is that they learn this

random high frequency patterning very late (if at all), and
as such our output maps are noise free.

Finally, our work estimates face decompositions. Mov-
ing to the more general case of portraits requires model-
ing geometric occlusion from external objects (world, hair,
trees, etc.) which we cannot deal with, and other complex
optical effects from face accessories like glasses. Future
work should investigate how to combine differentiable path
tracing with face modeling to capture refraction effects.

7. Conclusion

We present a method to decompose a single face image
into physically-based channels that are useful for editing ap-
plications. Our approach renders a more realistic dataset
than previously available, and then uses supervised deep
learning to encode priors that predict individual image for-
mation components. We demonstrate that this approach
is more successful than three recent methods with public
codebases, particularly for specular reflections. Going for-
ward, our work demonstrates the value of structuring deep
learning frameworks around physically-based image forma-
tion models for more accurate reconstruction and editing.



Table 3. Decomposition quantitative evaluation performance by L1, MSE, and perceptual LPIPS [38] metrics. † SfSNet was re-trained on
our data. With specular effects in the input images (‘Reconstruction’), our approach is better than SfSNet. Without specular in the input
(‘Diffuse’), we see that our reconstruction quality is slightly improved thanks to more accurate shading estimation, though albedo estimates
are slightly better for SfSNet. Note: We show LPIPS on Albedo and Shading for completeness, though this perceptual metric may be less
meaningful on these less natural images.

Method Reconstruction Albedo Shading Diffuse
L1 ↓ MSE ↓ LPIPS ↓ L1 MSE LPIPS L1 MSE LPIPS L1 MSE LPIPS

SFSNet† 0.0699 0.0178 0.1287 0.0470 0.0080 0.0612 0.099 0.0433 0.2819 0.0480 0.0089 0.0860
Ours 0.0496 0.0099 0.0869 0.0480 0.0085 0.0851 0.0483 0.0193 0.2731 0.0417 0.0076 0.0705

Figure 12. Comparisons of Ours and SfSNet (re-trained on our data) with Ground Truth (GT). Row: GT and Column: (a) is the Input
image. Left to Right: (a) Reconstruction, (b) Albedo, (c) Shading, (d) Diffuse, (e) Normal, (f) Illumination, (g) Specular, (h) Rho Map, (i)
Roughness Map.



Figure 13. Comparisons of Ours and SfSNet (re-trained on our data) with Ground Truth (GT). Row: GT and Column: (a) is the Input
image. Left to Right: (a) Reconstruction, (b) Albedo, (c) Shading, (d) Diffuse, (e) Normal, (f) Illumination, (g) Specular, (h) Rho Map, (i)
Roughness Map.

References

[1] R. Basri and D. W. Jacobs. Lambertian reflectance and linear
subspaces. IEEE Transactions on Pattern Analysis & Ma-
chine Intelligence, (2):218–233, 2003. 2

[2] A. Bousseau, S. Paris, and F. Durand. User-assisted intrinsic
images. ACM Transactions on Graphics (TOG), 28(5):130,
2009. 2

[3] D. A. Calian, J.-F. Lalonde, P. Gotardo, T. Simon,
I. Matthews, and K. Mitchell. From faces to outdoor light
probes. In Computer Graphics Forum, volume 37, pages
51–61. Wiley Online Library, 2018. 3

[4] A. Chen, Z. Chen, G. Zhang, Z. Zhang, K. Mitchell, and
J. Yu. Photo-realistic facial details synthesis from single im-

age, 2019. 2

[5] P. H. Christensen. An approximate reflectance profile for
efficient subsurface scattering. In ACM SIGGRAPH 2015
Talks, SIGGRAPH ’15, New York, NY, USA, 2015. Associ-
ation for Computing Machinery. 8

[6] B. O. Community. Blender - a 3D modelling and rendering
package. Blender Foundation, Stichting Blender Foundation,
Amsterdam, 2018. 3

[7] P. Debevec. Image-based lighting. In ACM SIGGRAPH 2006
Courses, pages 4–es. 2006. 2

[8] A. Dib, G. Bharaj, J. Ahn, C. Thebault, P. Gosselin, and
L. Chevallier. Face reflectance and geometry modeling via
differentiable ray tracing. ArXiv, abs/1910.05200, 2019. 2



[9] A. Dib, G. Bharaj, J. Ahn, C. Thébault, P. Gosselin,
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